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H. M. Georgi

Effective quantum field theories

In Chapter 15 I discussed the idea of Grand Unified Theories
(GUTs) of particle interactions. I still find that subject very
interesting, despite the disappointing failure of experiments to
find proton decay. But I have mixed emotions. I feel about the
present state of GUTs as I imagine that Richard Nixon's parents
might have felt had they been around during the final days of
the Nixon administration. I am very proud that the grand
unification idea has become so important. After all, at first it
was something of an ugly duckling, roundly ridiculed by
everyone. But proud as I am, I cannot help being very disturbed
by the things which GUTs are doing now.

GUTs were motivated by the physics of SU(2) xU(1) and
colour SU(3) and the desire to predict the value of the weak
mixing angle (a parameter in the SU(2)xU(1) model that
measures the relative strength of the SU(2) and U(1) interac-
tions) and to explain the quantisation of electrical charge. They
were certainly not an attempt to emulate Einstein and produce
an elegant geometrical unification of all interactions including
gravity, despite the parallels which have been drawn in the
semipopular press. Einstein's attempts at unification were
rearguard actions which ignored the real physics of quantum
mechanical interactions between particles in the name of
philosophical and mathematical elegance. Unfortunately, it
seems to me that many of my colleagues are repeating
Einstein's mistake. It is primarily for this reason that I want to
address the larger picture.

The language of relativistic quantum mechanics is called
‘quantum field theory'. In a quantum field theory, a field (like
the magnetic field surrounding a magnet) is assigned quantum
mechanical properties and is seen to be associated with a type of
particle (the magnetic field, for example, is associated with the
photon, the particle of light). In the last fifteen years, our
understanding of quantum field theory has changed con-
siderably. 1 believe that we have arrived at a mature and
satisfying view of the subject. It is this modern view of quantum
field theory that I will discuss here. The view of many field
theorists today is that the most appropriate description of
particle interactions in the language of quantum field theory
depends on the energy at which the interactions are studied.
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Table 16.1. Logarithmic energies and related distances

Energy Distance Associated
(M, xc?) (cm) physics
19 = Quantum
10 107 Gravity?
104 10:2° GUTs?
102 107'¢ W and Z particles
Quarks
107! 107'3 Nuclei
10°¢ 107" Atoms
Molecules
107" 1073 Amoeba
107'¢ 10? People

The description is in terms of an ‘effective field theory’ that
contains explicit reference only to those particles that are
actually important at the energy being studied. The effective
theory is the most useful means of extracting the physics in a
limited range of energies, but it changes as the energy changes,
to reflect changes in the relative importance of different
particles and forces. I should say at the outset that my own role
in the development of this view has been minor compared to
that of giants like Ken Wilson and Steve Weinberg. But the
invention of GUTs was important because it forced us to think
seriously about particle physics at extremely short distances.
ButI am getting ahead of myself. I am going to begin by making
some rather obvious statements about the nature of physics.



16.1 Dimensional analysis

Dimensional analysis is one of the oldest and most important
physical ideas. The key principle in dimensional analysis is that
physics should not depend on the units in which physical
parameters are measured. Because of this principle, the dimen-
sions of a physical quantity can tell you a lot about the physics
itself. To some degree, this principle is incorporated into our
common sense, that uneven distillation of instinct, experience
and learning that we carry with us in our study of the limited
physical universe of our everyday lives. When we hear that
something is measured in square centimetres, we immediately
think of an area. Kilometres per hour identifies a velocity.
Calories measure energy (often in a tempting form that
produces guilt when we eat it). We know from experience that
the actual value of each of these quantities depends on
comparison with a set of units that has no fundamental
significance except perhaps historically. We know that we can
convert from one set of units to another, as long as the
quantities measured are the same. But while we can compare
centimetres and inches, we know that it doesn't make sense to
compare centimetres with square inches. Inches and centi-
metres represent the same dimensional property in different
units. Centimetres and square inches are dimensionally dif-
ferent so they always measure physically different things.

Some other units are less familiar. Momentum, which has
units of mass times distance over time, grammes times
centimetres per second for example, measures the tendency of a
moving object to keep going in a straight line. Momentum
times distance (for example grammes times square centimetres
per second) is the unit of something called angular momentum,
the unit of spin. It is the physics of angular momentum that an
ice skater uses to perform a rapid revolution. For a fixed angular
momentum (and it is fixed unless the skater is given a twist by
some outside force such as the push or pull of the skates on the
ice) the rate of the skater’s turning is inversely proportional to
the area over which his mass is spread. When he lifts his arms
over his head, this area decreases and his rate of revolution
increases, even though his angular momentum stays about the
same (see figure 16.1).

We all understand in our bones that dimensional quantities,
those with units, have values that depend on the system of
units in which they are measured. That is very different from a
pure number like 1 or n. This is common sense. But dimen-
sional analysis is much more general than common sense.
Common sense applies only in the bounded domain of human
experience. Classical physics, the physics of Newton, is built on
common sense and quantifies and extends it in a precise
mathematical language to explain in great detail such different
phenomena as the fall of an apple and the motion of a planet. It
works so impressively well in the domain of our everyday
experience and at larger, astronomical distances, that in the
nineteenth century, many physicists were confident that they
knew most of what was worth knowing about the way the
world works.
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Figure 16.1. Conservation of angular momentum is well illustrated
by the spinning ice skater. By the drawing in of the arms, so
concentrating the skater's mass closer to the axis of rotation, the
rate of rotation increases.

16.2 Biology is not a branch of physics

In fact, however, classical and nonrelativistic physics are only
approximate theories which work well for velocities much
smaller than the speed of light, ¢, which is roughly equal to
3x10'"cms™! and angular momentam much larger than
Planck’s constant, #, which is about 10727 cm?s ™", c and A are
fundamental constants which mark the boundaries between
different appropriate descriptions of the world. The word
‘appropriate’ is crucial here. It is easy to say that classical and
nonrelativistic physics have simply been replaced by quantum
mechanics and relativistic physics, the theories that we know
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are needed to understand the world at small angular momenta
and large velocities. But it is not true that they have simply
been replaced. It is not true in a sense which is similar to the
sense in which the statement ‘chemistry and biology are
branches of physics' is not true. It is true that in chemistry and
biology one does not encounter any new physical principles.
But the systems on which the old principles act differ in such a
drastic and qualitative way in the different fields that it is
simply not useful to regard one as a branch of another. Indeed
the systems are so different that ‘principles’ of new kinds must
be developed, and it is the principles which are inherently
chemical or biological which are important. In the same way,
to study phenomena at velocities much less than ¢ and angular
momentum much greater than h, it is simply not useful to
regard them as special cases of phenomena for arbitrary
velocity and angular momentum. In fact, we usually put the
logic the other way around. The correspondence principle is the
statement that our quantum mechanical description of the
world must reduce to the simpler classical description in the
appropriate domain. We don't need relativity and quantum
mechanics for small velocities and large angular momenta. It's
just as well, too, because if we had had to discover the laws of
relativistic quantum mechanics from the beginning, we prob-
ably would never have gone anywhere.

Particle physicists, like me, tend to forget all this, because we
are interested almost exclusively in velocities nearly equal to
the speed of light, ¢, and angular momenta not much larger
than h. We don't need the fundamental constants ¢ and h as
boundaries because we are always in the same domain, so we
just set them equal to one and measure all dimensional
quantities in units of mass, or whatever. For example, when we
set ¢ equal to one, a second can be either a time of one second or
the distance that light travels in one second. When we set h
equal to one, one centimetre can be either a distance of one
centimetre or the inverse of the momentum required to produce
an angular momentum of h at a distance of one centimetre
from the axis. Thus we can measure energy and momentum in
units of mass, time and distance in units of inverse mass, force
in units of mass squared, etc. This habit is so ingrained that we
tend to use these units interchangeably. For example, I will
often convert the mass of a particle, M, into a distance, 1/M,
called the Compton wavelength of the particle, the length at
which we see the particle’s quantum mechanical properties.
For example, the Compton wavelength of an electron is about
4 x10 " ¢cm (40 millionths of a millionth of a centimetre).
The proton, which is almost 2000 times heavier, has a
Compton wavelength about 2000 times smaller, or
2 x 10~ "*cm. This is a trivial exercise in dimensional analysis,
but it illustrates a general feature of the quantum mechanical
world. The heavier a particle is, or the higher its energy, the
smaller is the distance at which its quantum effects appear.

Having said these obvious (?) things, I will now proceed with
a brief review of the history of quantum field theory.

16.3 Local quantum field theory

Field theory developed in the late 1920s and early 1930s to
describe the interactions of electrons and photons. It was the
natural synthesis of quantum mechanics and relativistic wave
equations like Maxwell's equations (the equations that describe
the properties of classical electric and magnetic fields) and the
Dirac equation (an attempt to describe the properties of the field
associated with the electron). Today we would say that this
particular synthesis was more than just natural, it was
inevitable. Local quantum field theory is the only way to
combine a quantum mechanical theory of particles with special
relativity consistent with causality. Causality is the general
principle that causes should always happen before their effects.
The word ‘local’ here is the crucial one. A local quantum field
theory is one in which the interactions which cause scattering
or creation or annihilation of particles take place at single
space-time points. Locality is important because action at a
distance causes trouble with causality in relativistic theories.

Obviously, the assumption of locality is an act of incredible
hubris. After all, a ‘space-time point’ is not a physical thing. It is
a mathematical abstraction — infinitely small. To really know
how particles interact at a single point you have to understand
how the world works down to arbitrarily small distances. That
is ridiculous! Only a particle theorist would have the infernal
gall to even propose such a thing!

Nevertheless, early quantum field theory yielded many
important results, although, from our modern vantage point,
the logic often seems confused. The Dirac equation was the first
relativistic treatment of electron spin. Goudsmit and Uhlenbeck
discovered in the 1930s that the electron behaves like a
spinning top. Its angular momentum is exactly half of Planck's
constant, #/2. A spinning electrically charged particle should
act as a magnet. The strength of the magnetism of such a
particle is measured by its g factor, which is the ratio of the
actual strength of the particle’s internal magnet to that of a
point particle with the same charge and mass moving around a
fixed axis to give the same angular momentum. Dirac’s theory
not only incorporated the spin of the electron in a way which
was consistent with Einstein’s relativity principle, but it also
‘predicted’ that the g factor of the electron is 2, close to its
experimental value. In fact, however, this was really only an
aesthetic argument. The arguments which led to the Dirac
equation also allow an additional term in the equation called a
Pauli term with an arbitrary coefficient, which gives an
arbitrary g factor. It is really only the ‘simplest’ Dirac equation
which gives g=2.

The ‘prediction’ of the positron was confused in a different
way. The Dirac equation has negative energy solutions. Dirac
realised brilliantly that, if nearly all the negative energy states
were filled, the few ‘holes’ would behave like particles with
positive charge. But at first he interpreted these as protons! The
work of Weyl, Oppenheimer and others convinced Dirac that



this interpretation was untenable and that his equations
predicted the existence of a genuinely new particle with the
same mass as the electron but with positive charge. Then the
positron was discovered, and eventually it was recognised by all
that it was Dirac's hole particle. Today, of course, we believe
that all particles have antiparticles with the same mass and
opposite charges (particles with no charge, like the photon,
can be their own antiparticles).

Perhaps the most impressive successes of early quantum field
theory were the calculations of scattering probabilities for a
variety of processes. These were possible because the theory
contained a small dimensionless parameter, the ‘coupling
constant’, e*/hc=0~1/137 (see Chapter 15). Scattering
probabilities could be calculated unambiguously to first order in
«. This means that the contribution to the probability that is
proportional to the small parameter « is calculated while the
contributions proportional to * and higher powers of « are
ignored. The processes which were studied included (where e~
is an electron and e* a positron):

Klein and Nishina, 1929
Dirac, 1930
Moller, 1932

} Bethe and Heitler, 1934
Bhabha, 1936

electron—-photon scattering

e*e” annihilation into photons
electron—electron scattering

e~ —e  +photon in nuclear field
photon—e*e~ in nuclear field
efe"—ete”

They were in reasonable agreement with experiment.

16.4 The tragic flaw

But not all was well. For one thing, in the 1930s and 40s, it
became clear that a theory of electrons and photons could not
be the whole story of particle interactions because there were
other particles and interactions: the proton, the neutron, the
pion, the muon, the neutrino . . ..

But what was worse was that the formalism of quantum field
theory itself seemed to have a tragic flaw. When nontrivial
calculations were attempted to higher order in «, the results
were infinite! This meant that the theory defined in the most
naive way simply did not make sense. These infinities arose
precisely because of the local nature of the interaction. They
were, in fact, the punishment imposed on particle theorists for
the hubris of locality. And they worried people a lot. The
possibility that it might be possible to absorb the infinities by
‘renormalisation’ of the physical parameters was discussed, but
not completely understood.
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16.5 Quantum electrodynamics

So matters stood until the theoretical physics community
reassembled after World War II. Stimulated by exciting experi-
ments (such as the measurement by Willis Lamb of the small
energy shift between two states of the hydrogen atom that were
predicted to have the same energy to first order in ), theorists
used renormalisation to do finite calculations of quantum
corrections to the first order results (such as the g factor of the
electron and the Lamb shift). In renormalisation, the theory is
defined by a limiting procedure. First the physics at distances
shorter than some cut-off length is modified so that the
calculations make sense. This involves giving up one or more of
the cherished principles which led to local interactions in the
first place. Then the parameters in this modified theory are
expressed in terms of physical, measurable quantities (masses,
scattering probabilities, etc.). Finally, the renormalised theory
is defined by taking the cut-off length to zero. Presumably, this
restores all the nice properties that a local quantum field theory
should have. With the new theoretical tool of Feynman
diagrams, it was possible to show that renormalisation was
sufficient to absorb all the infinities in a quantum field theory
into renormalised physical parameters. However, unless the
theory is carefully constructed, the number of parameters
required is infinite! The special theories in which only a finite
number of physical parameters are required to unambiguously
define the physics were called ‘renormalisable’. Fortunately, the
simplest theory of electrons and photons had the special
property of renormalisability. This was exactly the form of the
theory in which the electron’s g factor came out right. The local
quantum field theory that made sense was also the one that
accurately described the world. Quantum electrodynamics had come
of age.

Note that the logic here is a bit peculiar. The infinities in local
quantum field theory, which were regarded as a disaster when
they were first uncovered, became an asset with the develop-
ment of renormalisation and quantum electrodynamics. Par-
ticle physicists now had another principles, renormalisability —
another constraint to impose on their theories. An extra
constraint is always very useful because it decreases the
number of theories that you have to think about, which, in
turn, decreases the amount of work that you have to do. But
many physicists were uneasy about it, because this particular
asset still had its roots in an apparent disaster. Here is a similar
situation. Suppose I need a used car and I go to the only used car
dealer in town and find that every car, when I start the engine,
makes a horrible scraping noise and, after a minute or two,
starts smoking and smelling awful and stops running. But the
dealer tells me that there is one car which starts the same way,
but if I gun the engine and pound on the dashboard the
scraping sound goes away and the car runs beautifully. Well, I
try it out and it works! Terrific! I don't even have a decision to
make. SoI buy the car and it's a great car, just what I need. But
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somehow I can never stop wondering about what causes the
horrible scraping noise.

Nevertheless, the success of renormalisable quantum elec-
trodynamics in the following decade was spectacular. The
electron magnetic moment (g factor) and other quantities were
calculated to incredible accuracy and agreed well with increas-
ingly precise experiments. Quantum electrodynamics became
the paradigm of a successful physical theory. It began to look as
if hubris were justified.

16.6 New physics

The quantitative success of renormalisable quantum elec-
trodynamics sustained the prestige of quantum field theory for
nearly ten years. But in the late 1950s and the 1960s,
renormalisable quantum field theory began to run out of steam.
It was not that there was anything wrong with quantum
electrodynamics. There were just a lot of other things going on.
Experimental physics marched forward. Meson and baryon
resonances were discovered and studied. By definition, reson-
ances are incredibly short-lived structures, so that it barely
makes sense to call them particles at all. They decay as fast as
they are produced through so-called strong interactions into
more stable things such as pions and protons. Strange particles
were also discovered and studied. These are comparatively
long-lived particles, produced in particle-antiparticle pairs by
the strong interactions but decaying singly much more slowly
by so-called weak interactions.

At first, neither the strong nor the weak interaction could be
usefully described using renormalisable quantum field theory.
The problem with the strong interactions was that they were
strong. There was no small dimensionless parameter, like
2=1/137 of quantum electrodynamics. Reliable dynamical
calculations were impossible. Progress was made by using
symmetry arguments to extract information which was in-
dependent of the dynamical details, but that was all.

The weak interactions as seen in the decays of various
particles, on the other hand, could apparently be described very
well by a quantum field theory, to lowest order in a parameter,
the Fermi constant, G, which is about equal to 10~ in units
of inverse square of the proton mass. The trouble was that the
constant had dimensions of inverse mass squared. As I will
show you in a minute, this means that the theory is not
renormalisable. That in turn means that you must specify an
infinite number of physical input parameters to determine the
physics unambiguously. Most physicists felt, not unreasonably,
that this was an unsatisfactory situation.

16.7 Dimensional parameters and
renormalisability

That dimensionless parameters are OK while parameters with
dimensions of 1/m" lead to trouble can be seen, more or less, by
dimensional analysis. The physical idea which underlines
renormalisation is as follows. In the limiting procedure, in
which the cut-off length is taken to zero, the physics itself must
not depend on the cut-off, but our description of the physics
may. In fact, the parameters of the modified, cut-off theory must
be chosen to depend on the cut-off in order to keep physics at
distances much larger than the cut-off length fixed when the
cut-off changes. It follows that any dependence on the cut-off
that is important for very small cut-off lengths must be
associated with some parameter in the theory. To understand
the cut-off dependence, we must understand these parameters.
The parameters in a quantum field theory are the masses of the
particles it describes and the relativistically invariant ampli-
tudes for the various elementary scattering processes which
describe the interactions. Because the theory is quantum
mechanical, we expect these parameters to determine the
quantum mechanical amplitudes whose squares are related to
the probabilities for particle scattering.

The essential fact is that the local nature of the interactions
requires the mass dimension of the amplitudes that describe the
scattering processes to become more negative as the number of
particles involved in the scatterings increases. The reason is just
Heisenberg's uncertainty relation. In a quantum mechanical
theory, there is a limit to the accuracy with which one can
determine simultaneously the position of a particle and its
momentum. The product of the uncertainties in the position
and the momentum of any particle must always be greater than
Planck's constant #. But if several particles interact at the same
point in space, we know their relative positions exactly. At the
instant of the interaction, they are all sitting at the same point.
Therefore, according to Heisenberg, we can’t know anything
about their relative momenta. Apart from the difference
between the total momentum before and after the scattering
(which is fixed by energy and momentum conservation), all the
momenta can be varied continuously over the whole kinemati-
cally allowed region for the process. That, in turn, implies that
the probability that the scattering will take place for any
definite value of the momenta is infinitesimally small.

Here is a similar situation. Suppose that I put a penny
somewhere at random inside a cubic box of side one metre
which is full of sand. Now I can offer to pay you a billion dollars
if you guess exactly the position of the centre of the penny in the
box. I am completely safe because the probability of the penny
being exactly in any given spot is zero. To give you a chance
(which I would never do because I can't pay off the bet!) [ would
have to let you specify a volume in which you guess that the
centre of the penny lies. The probability that your guess will be



correct is then the ratio of the volume you specify to the total
volume of the box (1 m?). This means that the quantity that
describes the likelihood that the centre of the penny will be at a
given point is dimensional. It has units of inverse cubic metres.
I know that because [ must multiply it by a volume with units of
cubic metres to get a dimensionless probability.

In the same way, to get a finite value for the probability that a
local interaction will cause particle scattering, we must mul-
tiply the square of the amplitude by a ‘phase space’ factor that
gives the ‘volume’ or range of momentum, with units of mass
cubed. We must do this for each particle momentum. The result
is a probability which is dimensionless. That means that the
amplitudes, which contain the parameters that describe the
scatterings, must have mass dimension which decreases (in
this case, becomes more negative) as the number of particles
involved in the scattering increases. It turns out that only the
simplest scattering processes involving two, three or four
particles at a time can be associated with parameters with
dimensions of mass to the zero or a positive power. So you see
that the parameters are asymmetrical. There are only a finite
number of possibilities for parameters with dimensions of mass
to the zero or a positive power. But the number of possible
parameters with dimensions of mass to a negative power is
infinite. The more particles involved, the more negative the
mass dimension.

When we calculate quantum corrections in perturbation
theory in these parameters, the results can depend on the cut-
off length which we will eventually take to zero or alternatively
on a cut-off mass which we will eventually take to infinity. We
worry about contributions that go to infinity as M goes to
infinity. Any dangerous term will involve a product of two or
more of the parameters of the quantum field theory times some
increasing function of the cut-off mass, M. The increasing
function may be either a positive power of M or a logarithm of
M. But the effects of the cut-off at very short distances is just to
redefine or ‘renormalise’ the parameters which describe the
physics. Thus each correction term proportional to M* or log M
is associated with some physical parameter with the same mass
dimension as the correction. In particular, only those combi-
nations with the dimensions of one of the possible parameters
actually appear. We have to worry about only a finite number
of M dependent corrections with positive mass dimension,
because there are only a finite number of parameters with
positive mass dimension for such corrections to renormalise.
But there could be an infinite number of dangerous terms with
negative mass dimension.

Notice that if all the parameters have positive or zero mass
dimension, so will all of the dangerous quantum correction
terms. This is precisely the situation in which there are only a
finite number of dangerous terms, all of which can be absorbed
into a finite number of renormalised physical parameters. Thus,
theories in which all the physical parameters have zero or
positive mass dimension are renormalisable. But if any of the
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The logarithmic function, log M, is something that
increases with M more slowly than any power (even more
slowly than a fractional power like the square root, M?).
Physicists and mathematicians like to use what is called a
naturallogarithm that is defined by e "® = M, where eisan
irrational number about equal to 2.71828. A graph of this
functionisshowninfigure 16.2. Hereisaphysical picture of
thelog function. Supposethat you are trying tostop your car
but your brakesare wearing outsothattheyneverbring you
to a complete stop. Instead, the speed of the car at time T
(measuredin hours)is 1 kmdivided by T (thisgives the speed
in kilometres per hour). When T is 1h, your speed is
1kmh~'. When Tis 2 h, yourspeedis 0.5kmh™'. When T
is 10 h, your speed is 0.1 kmh ™. And so on. How far does
your car travel between time T equals 1 hand a later time T?
The answer (in kilometres)islog T. From the graph, you can
read that by T= 2, one hour after T= 1, the car has gone
about 0.7 km. After two hours at T= 3, it has gone about
1.1 km. The car never stops, so the distance it travels is
increasing, nomatter how large Tis. But therate of increase
keeps going down because the car keepsslowingdown. For T
less than one hour, the distance travelled is negative (as
shown inthe graph)becausethe car hasnot yet got towhere
it will be at T=1.

Figure 16.2. A graph of the natural logarithmic function.
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parameters have negative mass dimension, the corrections can
have arbitrarily negative mass dimension because the parameters
with negative mass dimension can appear many times in the
product. Thus you can never stop with a finite set of such
parameters. The cut-off dependent quantum corrections will
always have pieces with more negative mass dimension than
any parameter in your set. Only with an infinite number of
physical parameters can you absorb all the cut-off dependence.
This is why theories with parameters with negative mass
dimension are not renormalisable. Thus, amplitudes whose
coefficients have dimensions of inverse mass to a power are
called ‘nonrenormalisable interactions’ because they destroy
renormalisability.

It is possible to define what you mean by a theory that is not
renormalisable by establishing a set of arbitrary rules for
dealing with the cut-off dependence. But that doesn't help. If
you construct, in this way, a theory with a finite set of
parameters, some of which have negative mass dimension, you
are just fooling yourself. The theory really depends on an
infinite number of physical parameters but you have fixed all
but a finite number of them according to an arbitrary
prescription. There is no reason to expect such a construction to
have anything to do with the world.

16.8 The sociodynamics of particle theory

So far, I have been discussing history which I read about in
books, or learned from talking to my older colleagues. In 1947,
while quantum electrodynamics was being created, I was busy
being born in the post-war baby boom. But, by the mid 1960s, I
was an undergraduate at Harvard, getting interested in particle
physics myself. By this time, things had deteriorated to the
point that, at Harvard, no course in quantum field theory was
taught! Julian Schwinger, one of the heros of quantum
electrodynamics and soon to be a Nobel prize winner, had given
up on quantum field theory in favour of what he felt was a more
phenomenological formalism which he taught in a course
called ‘relativistic quantum mechanics’. He convinced me at
the time because he was a masterful lecturer and I was an
impressionable undergraduate. But I now believe that he was
pulling the wool over my eyes. Relativistic quantum mechanics
is quantum field theory, properly defined. Schwinger gave up
too early.

At any rate, though I didn't realise it at the time and didn't
fully appreciate it until 1971, the seeds of the explosive 1970s
were being sown all around me during the comparatively
boring 1960s.

This may be a good time to tell you my theory about how
theoretical particle physics works as a sociological and his-
torical phenomenon. The progress of the field is determined, in
the long run, by the progress of experimental particle physics.
Theorists are, after all, parasites. Without our experimental
friends todo the real work, we might as well be mathematicians

or philosophers. When the science is healthy, theoretical and
experimental particle physics track along together, each re-
inforcing the other. These are the exciting times. But there are
often short periods during which one or the other aspect of the
field gets way ahead. Then theorists tend to lose contact with
reality. This can happen either because there are no really
surprising and convincing experimental results being produced
(in which case I would say that theory is ahead — this was the
situation in the late 1970s and early 1980s, before the
discovery of the W and Z) or because the experimental results,
while convincing, are completely mysterious (in which case I
would say that experiment is ahead — this was the situation
during much of the 1960s). During such periods, without
experiment to excite them, theorists tend to relax back into
their ground states, each doing whatever comes most natur-
ally. As a result, since different theorists have different skills,
the field tends to fragment into little subfields. Finally, when the
crucial ideas or the crucial experiments come along and the
field regains its vitality, most theorists find that they have been
doing irrelevant things. But the wonderful thing about physics
is that good theorists don't keep doing irrelevant things after
experiment has spoken. The useless subfields are pruned away
and everyone does more or less the same thing for a while, until
the next boring period.

This theory explains, I hope, how I can say that the 1960s
were boring despite the fact that many of the pieces of the puzzle
of the SU(3) xSU(2) x U(1) theory of strong and electroweak
interactions were discovered in the 1960s (and even the
1950s). There were people, like Feynman, Gell-Mann, Glashow,
Weinberg, Ken Wilson and others, who had many of the right
ideas all along, but they were isolated islands in a sea of
confusion, unable to convince everyone else that what they
were doing was right, and frequently unable even to convince
themselves. After all, the original papers of Glashow and
Weinberg on the SU(2) x U(1) theory were pretty much ignored
even by the authors themselves until 1971. It wasn't obvious
that the theory was renormalisable because it still apparently
contained interactions proportional to a dimensional para-
meter, the inverse of the W mass.

While the decade of the 1960s was a difficult time to live
through, it is fascinating to look back on. Other articles in this
collection will go into this history in more detail. What I find
particularly amusing about it is the peculiar interplay between
the attempts to understand the weak interactions and the
attempts to understand the strong interactions. These had to be
closely connected because many of the particles which decay by
weak interactions are produced by, or otherwise participate in,
the strong interactions. But, in fact, the interplay was much
more subtle. Many of the ideas that were developed in an
attempt to understand the strong interactions eventually found
their most important application to the weak interactions
instead and vice versa. I regard this curious historical fact as
significant and mysterious. The crucial concepts that were
developed during this period include the renormalisation



group, gauge theories, flavour SU(3) symmetry, quarks, charm,
colour, spontaneous symmetry breaking, scaling, the parton
model, and some others that I will discuss later. All of these are
essential components of our present understanding. It is not
necessary that you know in more detail what all of these words
mean (you can learn more about them in some of the other
articles in this collection). But what I do want to convey is the
sense that during the 1960s, while we had almost all the pieces
of the puzzle of the strong and weak interactions, they were
scattered among a myriad of other ideas which would soon be
forgotten. Missing were the crucial theoretical insights and
experimental results needed to prune away the dead wood.

16.9 Spontaneously broken gauge theories

The missing theoretical idea, provided by 'tHooft in 1971, was
the demonstration that spontaneously broken gauge theories
can be renormalisable. In particular, he showed the renormalis-
ability of the SU(2)xU(1) gauge theory written down by
Glashow and Weinberg and Salam in which the weak interac-
tions are due to the exchange of W and Z particles. The W and Z
are gauge bosons like the photon, but heavy because of
spontaneous symmetry breaking. The main reason that this
was nontrivial is that, in gauge theories, the symmetry and the
dynamics are intertwined in such a way that you need the
symmetry to perform the renormalisations. But the physical
states in the theory do not respect the symmetry because the
vacuum breaks it spontaneously. Thus the absorption of the
infinites into the physical parameters does not work in any
simple way. But what 'tHooft, Ben Lee and a few other people
realised was that the important thing in the renormalisation
programme was to get rid of the dependence of physical results
on the physics at very short distances. This should have
nothing to do with the spontaneous symmetry breaking which
gives mass to the W and Z because the spontaneous symmetry
breaking affects the structure of the physics only at distances
longer than the scale at which the symmetry is broken, in this
case the Compton wavelength of the W and Z. With the help of
Veltman, 'tHooft was able to disentangle the symmetry from
the dynamics. They also introduced a new renormalisation
scheme in which the short distance effects are simply thrown
away by a completely automatic procedure that makes no
explicit reference to the physical parameters. With these, and a
few other, bits of cleverness he was able to show that
spontaneously broken gauge theories are renormalisable.
There are many nice things about 'tHooft's scheme. One
thing I liked very much (when I finally understood it) was the
fact that in "tHooft's procedure the M” divergences do not even
have to be thrown out. They never show up at all. In fact, I
think that this is good because these divergences have no
physics in them. They can be renormalised away completely, so
it is nice that they never appear at all. On the other hand, the
logarithmic divergences are interesting because they must be
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associated with a log of some other dimensional parameter, a
momentum or mass. This is dimensional analysis again. The
log function is dimensionless. You can find the log of a
dimensionless number unambiguously, but the log of a mass
depends on the units in which the mass is measured. Thus the
logarithmic divergences must have the form:

log (M/m),

where m is some physical parameter with the dimensions of
mass so that M/m is dimensionless and independent of the
choice of units. m may be the mass or energy or momentum of
one of the particles involved in the process you are calculating.
When the logarithmic divergence is absorbed, the rest of the
logarithm remains. Thus renormalisation requires a dimen-
sional parameter to set the scale of the logarithm. This is called
the renormalisation scale . It is arbitrary in principle, but in
fact, for any given calculation, some renormalisation scales are
more convenient than others because of the presence of logs of
m/ . If all the masses and momenta in a process are of the same
order of magnitude, it pays to choose yu in the same range to
minimise the effects of the logs and make the perturbation
theory better behaved. It is this logarithmic dependence on the
renormalisation scale which is responsible for the renormalis-
ation group dependence of parameters on the distance or
momentum scale, first discussed by Gell-Mann and Low. In the
renormalisation group, you use the physics at one scale u to
figure out what the physics will look like at a very nearby scale.
But by putting together many of these small steps, you can
understand how the physics changes under large changes of
the scale.

We now know that all this solved the problem of the weak
interactions. Fortunately, it wasn't obvious in 1971 because it
wasn't clear that the Glashow-Weinberg—Salam SU(2) x U(1)
theory was the right one. So theorists had a good excuse to
explore the vast new class of renormalisable theories which
‘tHooft had opened up for us. Five years later, the experimental
evidence had settled down to the point where we could be
confident that SU(2) x U(1) was right, but, in the mean time, a
great deal was learned about the properties of the new kind of
theory.

16.10 Scale dependence

One of the most important properties was discovered by Sidney
Coleman and Eric Weinberg. They thought about quantum
field theories which naively have no dimensional parameters
and only a single dimensionless parameter, such as quantum
electrodynamics with a zero mass electron. They realised that,
because the renormalisation scale u has to be introduced to
define the quantum theory, the physics is actually determined
by a dimensional parameter instead of a dimensionless one. The
point is that the renormalised dimensionless coupling is a
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function of the renormalisation point, but by dimensional
analysis it must therefore be a function of u/A, where A is some
fixed dimensional parameter. Thus

o) =f(p/A).

Furthermore, the u dependence of «(y) is determined by the
theory. Therefore fis some fixed, computable function. The A is
the only thing that can actually be varied. They called this
process, in which a dimensionless parameter « is traded for a
dimensional parameter A, ‘dimensional transvestism’'. This
was too much for the editors of the Physical Review, who
consider it part of their job to keep the language of particle
physics as boring as possible, so the effect is now called
‘dimensional transmutation’.

In quantum electrodynamics, the coupling constant is an
increasing function of u, which looks approximately like

ofp)=Db/log(A/u)

for some constant b. Since x=e?/hc must be greater than zero,
this only makes sense for A greater than u where the log is
positive. Indeed, the quantum electrodynamics theory probably
only makes sense, in principle, for u less than A. This used to
worry some people. It no longer bothers us in quantum
electrodynamics. Because « is quite small at ordinary scales, the
log must be big. That means that A is a truly enormous mass.
Since we do not believe that quantum electrodynamics is a
complete theory of the world, we don't worry too much that it
doesn’t make sense at energies much larger than anything that
we care about. However, it was thought, at one time, that all
interesting quantum field theories behave as quantum elec-
trodynamics does. That is they are sick at very short distances.
But David Politzer and others showed that this is not true.
Gauge theories based on groups such as SU(2) and SU(3) (which
are called non-Abelian because their group multiplication laws
are not commutative, see my chapter on GUTs) have exactly
the opposite property. Asymptotic freedom! In these theories,
the coupling constant is again dimensionless, and again
dimensional transmutation occurs so that the actual para-
meter which determines the physics is a mass A. But here the
coupling decreases with scale:

a(u)=b/log(u/A).

This makes sense only for u greater than A. For scales much
larger than A the theory can be simply described in terms of the
gauge couplings. But, for scales of order A and smaller, the
description of the theory in terms of perturbation theory in the
coupling « no longer makes sense. In this region, the character
of the theory must change in some way.

In the colour SU(3) theory of the strong interactions,
quantum chromodynamics, we believe that the change in the
character of the theory at large distances is associated with
colour and quark confinement. The A parameter in quantum
chromodynamics is the length scale at which confinement
becomes important. At shorter distances, the theory can be

described accurately in terms of the interactions between
quarks and gluons (the gauge particles of quantum chromody-
namics, like the photon in quantum electrodynamics). But at
longer distances this picture breaks down. The colour force
between quarks, which behaves much like electromagnetism
at distances shorter than 1/A, does not drop off further for
distances longer than 1/A. This was not at all obvious before
1973, because most of our understanding of the strong
interactions was based on experiments at long distances, where
the nature of the physics is dominated by confinement and the
underlying dynamics is obscured.

16.11 Grand Unified Theories

Once we understood SU(2) xU(1) and quantum chromody-
namics, Grand Unified Theories were a simple step. The
motivation for the simplest GUT, SU(5), was not any mystical
desire to follow in Einstein's footsteps and unify everything.
Shelley Glashow and I were just trying to understand
SU(2) x U(1) better. For several years, we had realised that if we
could incorporate the SU(2) xU(1) gauge symmetry into a
single simple group it would give us some extra information. It
would fix the value of the weak mixing angle, a free parameter
in the ordinary SU(2) x U(1) theory and it would explain why
all the electric charges we see in the world are multiples of the
charge of the electron. But we were having great difficulty
doing it. The quarks never seemed to fit in properly. When he
heard about quantum chromodynamics, Shelley suggested that
we might have to incorporate colour to get it to work. When [
pointed out to him that the strong interactions are strong, he
replied that we only know that they are strong at long distances
where confinement is important. At sufficiently short dist-
ances, they could be as weak as SU(2) x U(1). With that hint, it
was easy for me to find the SU(5) theory, into which SU(3)
colour and electroweak SU(2) x U(1) fit very neatly, basically
because 2 + 3 =5. Of course, this theory also predicted proton
decay, but that just meant the scale at which the SU(5)
symmetry was broken had to be extremely large.

A few months later, Helen Quinn, Weinberg and I figured out
how to actually calculate the scale of SU(5) breaking in the
simplest SU(5) model and we discovered that the scale really is
very large. about 10'*'°GeV.

16.12 Effective field theories

What I want to emphasise about all this is the following. In our
understanding of the weak interactions and strong interactions
based on SU(2) x U(1) and SU(3) and in the attractive specu-
lation of GUTs, based on SU(5), there is a crucial role played by
dimensional parameters, the confinement scale of quantum
chromodynamics and the breaking scales of SU(2) x U(1) and
SU(5). This was a dramatic change from quantum elec-



trodynamics in which the physics seemed (at least to the naive
observer) to be mostly in the dimensionless coupling constant a.
Furthermore, we were getting used to incorporating physics at
short distances (such as GUTs) without disturbing our under-
standing of physics at longer distances. Many physicists began
to verbalise and answer a question which had been nagging at
them for a long time. If there is all this wonderful stuff going on
at short distances, how come quantum electrodynamics
worked so well? Of course, the reason is obvious and had been
known, in some sense, for a long time. Quantum elec-
trodynamics works extremely well for the electron because the
distances at which other stuff is happening are very small
compared to the electron’s Compton wavelength. It was easy to
see this explicitly in theories such as SU(2) xU(1) in which
quantum electrodynamics was embedded in a more com-
plicated but still renormalisable theory at a smaller distance
scale. But physicists were slow in appreciating the full power of
the idea, which is unleashed only when quantum elec-
trodynamics is thought of as an ‘effective field theory’, ap-
proximately valid at long distances.

The point is this. At distances of the order of the electron
Compton wavelength, the only particles we really have to think
about are the electron and the photon. All other charged
particles are heavier, and, at such large distances, there is not
enough energy to produce them, so we do not have to include
them in our theory. There are light neutral particles, neutrinos,
but at these distances they are so weakly interacting that they
don't matter much, so we can ignore them as well. Thus we can
describe the electron-photon interaction at these large dist-
ances by an effective field theory involving only the electron
and the photon. This has to work. With a completely general
quantum field theory, we can describe the most general possible
interactions consistent with relativity, quantum mechanics
and causality. We do not give up any descriptive power by
throwing out the heavier particles and going to an effective
theory.

It might seem, though, that we have given up predictive
power. After all, an arbitrary effective theory has an infinite
number of nonrenormalisable interactions and thus an infinite
number of parameters. But this is not quite right for two
reasons, one quantitative and one qualitative. Quantitatively, if
we know the underlying theory at shorter distances, we can
calculate all the nonrenormalisable interactions. Indeed, there
is a straightforward and useful technology for performing these
calculations. Thus quantitative calculations can be done in the
effective theory language.

The qualitative message is even more interesting. All of the
nonrenormalisable interactions in the effective theory are due
to the heavy particles which we have ignored. Therefore, the
dimensional parameters that appear in the nonrenormalisable
interactions in the effective theory are of the order of the heavy
particle masses. If these masses are all very large compared to
the electron mass and the photon and electron energies, the
effects of the nonrenormalisable interactions will be small.
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They will be suppressed by powers of the small mass or
momenta over the large masses.

Thus, not only do we not lose any quantitative information
by ignoring the heavy particles and going to an effective field
theory language, but we gain an important qualitative insight.
When the heavy particle masses are large, the effective theory is
approximately renormalisable. It is this feature that explains
the success of renormalisable quantum electrodynamics.

To extract the maximum amount of information from the
effective theory with the minimum effort, we should renormal-
ise the theory to minimise the logarithms that appear in
perturbation theory. We can do this by using "tHooft's scheme
and choosing the renormalisation scale, y, appropriately. If all
the momenta in a process of interest are of order 4, there will be
no large logarithms. The standard techniques of the re-
normalisation group can be used to change from one u to
another as required.

In the extreme version of the effective field theory language,
we can’ associate each elementary particle Compton wave-
length with a boundary between two effective theories. For
distances larger than its Compton wavelength, the particle is
omitted from the theory. For shorter distances, it is included.
The connection between the parameters in the two effective
theories on either side of the boundary is simple. They must be
related so that the description of the physics just below the
boundary (where no heavy particles can be produced) is the
same in the two effective theories. These relations are called
‘matching conditions’ for obvious reasons. They are calculated
with u equal to the mass of the boundary particle to eliminate
large logs.

If we had a complete renormalisable theory at infinitely short
distances, we could work our way up to the effective theory at
any larger distance in a totally systematic way. Starting with
the mass M of the heaviest particles in the theory, we could set
u=M and do the matching to find the parameters of the
effective theory with the heaviest particles omitted. Then we
could use the renormalisation group to scale g down to the next
heaviest mass and repeat the matching calculations to produce
the next effective theory. And so on! In this way we get a tower
of effective theories, each with fewer particles and more small
nonrenormalisable interactions than the last. We simply have
to continue this procedure until we get to the large distances in
which we are interested.

There is another way of looking at it, however, which
corresponds more closely to what we actually do in studying
physics. We can start at long distances and try to build up each
member of the tower of effective theories stretching down to
arbitrarily short distances only as it becomes relevant to our
understanding of physics. In this view, we do not know what
the renormalisable theory at short distances is, or even that it
exists at all. In fact, we can dispose of the requirement of
renormalisability altogether and replace it with a condition on
the nonrenormalisable interactions in the effective theories.
The condition is this:
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In the effective theory which describes physics at a scale y,
all the nonrenormalisable interactions must have dimen-
sional couplings less than 1/u to the appropriate power. If
there are nonrenormalisable interactions with couplings
1/Mtoapower, for some M greater than y, there must exist
heavy particles with a mass m less than or about equal to M
that produce them. In the effective theory including the
heavy particles, the nonrenormalisable interactions must
disappear.

Note that an effective field theory, like any nonrenormalisable
theory, depends on an infinite number of parameters (which
are related at shorter distances). But the above condition
insures that only a finite number of them are actually
important in any physical situation because all the non-
renormalisable interactions are suppressed by powers of u/M
where u is less than M. Thus, as we go down in distance
through the tower of effective field theories, the effects of
nonrenormalisable interactions grow and become interesting
on the boundaries between theories, at which point they are
replaced by renormalisable (or, at least, less nonrenormalisable)
interactions involving heavy particles.

This condition on the effective theories is, I believe, a weaker
condition than renormalisability. One can imagine, I suppose,
that the tower of effective theories goes down to arbitrarily
short distances in a kind of infinite regression. This is a peculiar
scenario in which there is really no complete theory of physics -
just a series of layers without end. More likely, I think, the series
does terminate, either because we eventually come to the final
renormalisable theory of the world, or (most plausible of all)
because, at some very short distance, the laws of relativistic
quantum mechanics break down and an effective quantum
field theory is no longer adequate to describe the physics.

Renormalisability is still very important. When the gap
between two neighbouring mass scales is large, the effective
field theory near the lower scale is approximately renormalis-
able, because the nonrenormalisable interactions have a very
small effect. This is the situation in quantum electrodynamics
near the electron mass scale. But we no longer have to assume
that renormalisability is a fundamental property.

In this picture, the presence of infinities in quantum field
theory is neither a disaster, nor an asset. It is simply a reminder
of a practical limitation — we do not know what happens at
distances much smaller than those we can look at directly.

Whatever happens at short distances, it doesn't affect what
we actually do to study the theory at the distances we can
probe. We have purged ourselves of the hubris of assuming that
we understand infinitely short distances. This is the great
beauty of the effective field theory language.

16.13 Dollars and direction

Some of you are probably saying to yourselves, by this time,
that the whole idea of effective field theories is rather simple and
obvious, so why have I subjected you to an article on the
subject? One reason is that it makes a difference in dollars.
Since our understanding of physics is organised by distance
scale (we understand physics at distances greater than
10 '®cm, but not at smaller.distances), we must push for
experimental information at short distances. But short dist-
ances mean large energies which mean larger and more
expensive accelerators. More specifically, our general under-
standing of the connection between small nonrenormalisable
effects and the heavy particles which produce them is import-
ant in the planning of future accelerators.

But I have another reason for talking about effective field
theories. As I suggested at the beginning of this chapter, I am
somewhat concerned about the present state of particle theory.
The problem is, as I mentioned before, that we are in a period
during which experiment is not pushing us in any particular
direction. As such times, particle physicists must be especially
careful.

We now understand the strong, weak and electromagnetic
interactions pretty well. Of course, that doesn’t mean that there
isn't anything left to do in these fields any more than the fact
that we understand quantum electrodynamics means that
there is nothing left to do in atomic physics. The strong
interactions, quantum chromodynamics, in particular will
rightly continue to absorb the energies of lots of theorists for
many decades to come. But it is no longer frontier particle
physics in the sense that it was fifteen years ago.

What then is there to do? If we adopt the effective field theory
point of view, we must try to work our way down to short
distances from what we know at longer distances, working
whenever possible in the effective theory which is appropriate to
the scale we are studying. We should not try to guess the
ultimate theory at infinitely small distances. Even if we could do
it, it would probably be about as useful as explaining biology in
the language of particle physics. This seems to me to be an
extremely important bit of common sense, a useful antidote to
the Einstein complex (that is a desire to work on difficult and
irrelevant theoretical questions just because Einstein did it) to
which most theoretical particle physicists are very susceptible.

Thus, for example, one subject that certainly deserves the
attention of all theorists is the question of what causes the
spontaneous breaking of the SU(2)x U(1) symmetry of the
electroweak interactions. This is the physics of the next effective
theory and it will be explored by experiment in the near future,
if we have the strength and the will to build the superconduct-
ing supercollider and push the experimental frontier to the next



scale at energies many tens of thousands of times higher than
the proton mass!

It is not so obvious that GUTs are interesting things to study.
Some years ago, in a panel discussion, Feynman presciently
asked me what I would think about SU(5) if proton decay was
not observed at the predicted level. In my youthful enthusiasm,
I replied that I would believe that it is right anyway. It is too
pretty to be wrong. I think that I still believe that. But what I
didn't see at the time was that SU(5) or closely related GUTs
could be right but not very interesting. If proton decay is
actually observed, they become extremely interesting. But until
then, apart from a few numbers which express the relations
between parameters in our low energy world which follow from
unification, their only connection with reality is through
cosmology. Cosmology is fun, but it seems unlikely to me that
we will know enough about it to extract much quantitative
information about physics at very short distances, at least not
anytime soon.

I am particularly suspicious of attempts to guess the
structure of physics below the Planck length (the length at
which quantum gravitational effects are expected to become
important, about 10~ 32 cm). If there is any scale at which we
might expect quantum field theory to break down, this is it,
because there is no satisfactory quantum theory of gravity
based on conventional relativistic quantum mechanics in
ordinary space-time. Indeed, most of the popular theories (such
as Kaluza—Klein theories or string theories) assume that physics
changes rather dramatically here and that space-time actually
has more than four dimensions.

Apparently, the mathematics of these ideas is so appealing
that no one is immune. Steve Weinberg, one of the heros of the
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effective field theory idea, has become so wrapped up in it that
he came to Harvard recently to give us a series of talks on
differential geometry. I was so moved that I composed the
following poem for the occasion:

Steve Weinberg, returning from Texas
brings dimensions galore to perplex us.
But the extra ones all
are rolled up in a ball
so tiny it never affects us.

One problem with all this, of course, is that ‘it never affects us'.
These theories probably have no experimental consequences at
all in the practical sense, because we will never probe small
enough distances to see their effects. But there is another
subtler objection to this kind of speculation. Once you start
relaxing the assumptions of relativistic quantum mechanics,
where do you stop? In practice, theorists have considered only
theories which they happened to know something about for
purely accidental historical reasons. That does not seem to me
to be a good enough reason to look at them. Theoretical physics
must be more than an historical accident.

My personal suspicion is that Nature is much more imaginat-
ive than we are. If we theorists approach her study with the
proper respect, if we recognise that we are parasites who must
live on the hard work of our experimental friends, then our field
will remain healthy and prosper. But if we allow ourselves to be
beguiled by the siren call of the ‘ultimate’ unification at
distances so small that our experimental friends cannot help us,
then we are in trouble, because we will lose that crucial process
of pruning of irrelevant ideas which distinguishes physics from
so many other less interesting human activities.



